🎁BACK-TO-SCHOOL DEAL. Subscribe Now to get 40% OFF at only 8.49 USD/month, only valid until Sep 30th, 2024

Question

1.) How might you add "Keystone species" to the concept map? 

A.) Keystone species increase competition among all populations in a community.   

B.) Keystone species are the most abundant members of communities.

C.) Keystone species always live with other species in symbiosis.

D.) Keystone species influence the diversity of communities

2.) What is the correct relationship between the abiotic environment and trophic levels? (Select all that apply.)

The resources available in the abiotic environment limit the number of trophic levels in a community.

Fat soluble chemicals that organisms at low trophic levels obtain from the abiotic environment will decrease in concentration in the higher trophic levels.

Organisms at the lowest trophic level of a community obtain nutrients directly from the abiotic environment.

Some of the energy that producers obtain from the abiotic environment is lost at each trophic level. 

3.) Herbivory has the same effect on species in a community as 

competition.

mutualism.

commensalism.

parasitism.

 

Asked By SereneWanderer85 at

Answered By Expert

Jamie

Expert · 3.2k answers · 3k people helped

Step 1/2

To add "Keystone species" to the concept map, the most appropriate statement would be:

D.) Keystone species influence the diversity of communities.

Explanation:

Keystone species are those that have a significant impact on the structure and functioning of an ecosystem, disproportionate to their abundance. They play a crucial role in maintaining the balance and diversity of communities by exerting control over other species or ecological processes. Their presence or absence can have far-reaching effects on the ecosystem's overall biodiversity and stability.

Option D correctly captures the essence of the role of keystone species in influencing community diversity. By adding this statement to the concept map, it helps highlight the importance of keystone species in shaping the composition and dynamics of ecological communities.

Step 2/2

The other given options in the question are incorrect as:

Explanation:

A.) Keystone species increase competition among all populations in a community: This option is not accurate. Keystone species do not necessarily increase competition among all populations in a community. Their role is more focused on exerting influence and regulating other species within the ecosystem.

Explanation:

B.) Keystone species are the most abundant members of communities: This option is incorrect. Keystone species are not defined by their abundance. They can be present in low or high numbers but have a significant impact on the ecosystem's structure and function.

Explanation:

C.) Keystone species always live with other species in symbiosis: This option is also incorrect. While some keystone species may have symbiotic relationships with other species, it is not a requirement for them to always live in symbiosis. Keystone species can influence the community through various mechanisms, such as predation, habitat modification, or resource provisioning.

Final Answer

Therefore, the correct option to add "Keystone species" to the concept map is:

D.) Keystone species influence the diversity of communities.

This option accurately represents the key role of keystone species in influencing the diversity of ecological communities.

🧑‍🏫 More Questions

Problem 2: Recursive Binary Search Write a recursive function binary_search that takes an ordered array of numbers a and a number to search for n as parameters and returns the index of the first occurrence of the number in the array, or -1 otherwise. For full credit, the search should be implemented using recursion, rather than a loop. Given a = [-1, 1, 3, 5, 7, 9]: Example call Returns linear_search(a, 1) 1 linear_search (a,0) -1 linear_search(a, -1) 0 linear_search(a, 2) -1 linear_search(a, -2) -1 linear_search(a, 4) -1 binary_search.py 1 # MODIFY ME TO IMPLEMENT YOUR SOLUTION 2 # TO PROBLEM 2: Recursive Binary Search 3 # 4 # NAME: FIXME 5 # ASSIGNMENT: Technical HW: Sorting & Searching 6 7 # Write a recursive function 'binary_search that 8 # takes an ordered array of numbers as a parameter 9 # and a number to search for and returns the index 10 # of the number in the array, or -1 otherwise. For 11 # full credit, the search should be implemented using 12 # recursion, rather than a loop. 13 def binary_search(array, num): 14 | return search(array, num, 0, len(array) - 1) 15 16 def search(array, num, min, max): 17 TIT return -1 18 19 def main(): 20 a = [i for i in range(-1, 10, 2)] 21 print(a) 22 for n in (1, 0, -1, 2, -2, 4, 5, 6, 7, -67, 134]: 23 print("%5d index? %d" % (n, binary_search(a, n)) ) 24 main() 25 I'I binary_search_test.py From binary_search import binary_search 1 2 3 def test_empty(): assert binary_search([], 0) == -1 4 5 6 7 8 9 def test_1(): a = [-67, -44, -2, 33, 45, 67, 134] accont hinary_search(a, 1) == == -1 test_o() def test 0(): a = [-67, -44, -2, 33, 45, 67, 134] assert binary_search(a,0) == -1 10 11 12 13 14 15 def test__1(): a = [-67, -44, -2, 33, 45, 67, 134] assert binary_search(a, -1) == -1 16 17 18 19 def test_2(): a = [-67, -44, -2, 33, 45, 67, 134] assert binary_search(a, 2) == -1 20 21 22 23 def test_2(): a = [-67, -44, -2, 33, 45, 67, 134] assert binary_search(a, -2) == 2 24 25 binary_search_test.py - 3 3 25 26 def test_134(): 27 a = [-67, -44, -2, 33, 45, 67, 134] 28 assert binary_search(a, 134) == 6 29 30 def test_67(): 31 a = [-67, -44, -2, 33, 45, 67, 134] 32 assert binary_search(a, 67) == 5 33 34 E def test__67(): 35 a = [-67, -44, -2, 33, 45, 67, 134] 36 assert binary_search(a, -67) 37 38 E def test_first(): 39 a = [1, 1, 1, 2, 2, 2, 2, 2, 2] 40 assert binary_search(a, 2) == 3 41 42 E def test_first1(): 43 a = [1, 1, 1, 2, 2, 2, 2, 2, 2] 44 assert binary_search(a, 1) == 0 45 46 def test_last(): 47 a = [1, 1, 1, 2, 2, 2, 2, 2, 2, 3] 48 assert binary_search(a, 3) == 9 49 5 50

Problem 4 - Starfish Starfish are known for being able to regenerate their bodies from a single leg if it is detached. Though we will not be harming any starfish, we will by counting hypothetically the number of starfish we can create by cutting a five legged starfish into five parts. For our problem, a starfish will regenerate one leg per "turn." Once it gets all five of its legs back, we will separate it into five legs which will then each start regenerating into five separate starfish. Our goal is to count the number of starfish after a specified number of generations or turns. For instance, if you start with a 2 legged starfish and a 5 legged one, then the next turn you will have a 3 legged starfish from a turn of regeneration and then five arms (one legged starfish) that we've separated. So the list will go from <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mclose">]</span></span></span></span> to <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mclose">]</span></span></span></span>. If you have multiple five legged starfish you must repeat the process for each of them. As another example, if you have a list containing <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mclose">]</span></span></span></span> you will end up with <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mclose">]</span></span></span></span> on the next turn. Given the number of generations and a starting list of starfish legs, write a function: def starfish(leg_list, generations): Sample Output Using the driver code here: def count_starfish(leg_list): leg_counts <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mclose">}</span></span></span></span> for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathrm">x</span></span></span></span> in leg_list: leg_counts <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord mathrm">x</span><span class="mclose">]</span><span class="mord">+</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> return leg_counts print (count_starfish (starfish ([1, 2, 3, 4, 5], 3))) print (count_starfish (starfish <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">([</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mclose">]</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">10</span><span class="mclose">)))</span></span></span></span> print (count_starfish (starfish <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">([</span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mclose">]</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mclose">)))</span></span></span></span> print (count_starfish (starfish ([1], 20))) print (count_starfish (starfish ([5, 5, 5, 5, 5], 5))) linux5[109]8 python starfish.py <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">}</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">25</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">25</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">25</span><span class="mclose">}</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">15</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mclose">}</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">625</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mclose">}</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">25</span><span class="mclose">}</span></span></span></span>