šŸŽBACK-TO-SCHOOL DEAL. Subscribe Now to get 40% OFF at only 8.49 USD/month, only valid until Sep 30th, 2024

Question

Question
Alpha Company manufactures breadboxes and uses an activity-based costing system to allocate all manufacturing conversion costs. The following information is provided for the month of May: Activity Estd Indirect Activity Costs Allocation Base | Estimated Allocation Base Materials handling $ 3,500 Number of parts 5,000 parts Assembling 12,000 Number of parts 5,000 parts Packaging 5,750 | Number of bread boxes 1,250 bread boxes

Asked By CelestialDreamer51 at

Answered By Expert

Stuart

Expert Ā· 1.5k answers Ā· 1k people helped

Total manufacturing cost per breadbox

= (3,500/5,000)*4 + (12,000/5,000)*4 + (5,750/1,250)*1 + 9

= 2.80 + 9.60 + 4.6 + 9

= $26

šŸ§‘ā€šŸ« More Questions

Problem 2 - Recursive Binary Create a recursive function in a file called binary.py: This recursive function should return the binaly representation of a number. Here is how to think about this problem. Writing a function that calculates the binary representation should always ask whether or not the number in question is even or odd. For instance, if you were to convert 5 into binary, 5 is odd so you know that the first digit should be a 1 . After this, then you should think about it this way, if you (integer) divide the number by 2 , then you'll get <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">5//2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span>, and the binary for 2 is 10. If you put 10 together with 1 at the end, then you'll reach 101 which is the binary for 5 . How can you make this into a recursive process? When you think about the base case, you can use it to add the Ob to the binary number to match what the built in bin <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> produces. When you use this driver code to call your function you should see that the binary expression matches. <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathrm">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span></span></span></span> int (input ('Tell me number: ')) while <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathrm">x</span><span class="mspace" style="margin-right:1em;"></span><span class="mclose">!</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">āˆ’</span><span class="mord">1</span></span></span></span> : print ('Ob' + binary (x), bin(x)) <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathrm">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span></span></span></span> int (input ('Tell me number: ')) linux5[109]\& python binary.py Tell me number: 5 Ob101 0b101 Tell me number: 21 Ob10101 0b10101 Tell me number: 57 Ob111001 Ob111001 Tell me number: 214 Ob11010110 Ob11010110 Tell me number: 12345 0b11000000111001 0b11000000111001 Tell me number: 3 Ob11 0b11 Tell me number: 2 Ob10 Ob10 Tell me number: 17 0b10001 0b10001 Tell me number: -1