🎁BACK-TO-SCHOOL DEAL. Subscribe Now to get 40% OFF at only 8.49 USD/month, only valid until Sep 30th, 2024

Question

Graveyard Walk TEAS VI Passage 
Graveyard Walk Steven walked through the graveyard every day on his way home from school. It was a convenient shortcut, and in broad daylight, the tombstones and dark cypress trees seemed mild and unthreatening. Things were different this evening. Steven stole through the gates as quickly as possible, fearful that he was being watched. He ran to the deep shadows of a mausoleum and caught his breath, heart pounding. He tried to listen for ominous noises, but could hear nothing over the blood rushing through his ears. He pressed the button to light up his watch: 11:30 p.m. He must stay here a full hour to win the bet. He now wished he had never taken it. He heard a slow scrape from behind him. Steven froze, and then turned with underwater slowness. To his horror, he could see the mausoleum door sliding open. Steven wanted to run, but could not. He could not feel his legs; he struggled to draw breath. A yellow light shone from inside the mausoleum. Shadows crept and danced on the tombstones as someone or something- holding the light pushed through the door. It made a terrible, guttural sound, like the groans of a dying man. The door swung fully open.On the mausoleum threshold stood an old man in a plaid shirt, a lantern in his hand and a cigarette in his mouth. He coughed again, spat, and closed the door. It was only the graveyard groundskeeper, finishing up a long day of work. The groundskeeper ambled off toward the machine shed. As soon as the man’s back was turned, Steven left his hiding spot and ran. His friend David could keep that $5 wager. An hour in this place just wasn’t worth it.

1.) Which of the following sentences as used in the passage indicates a “compare and contrast text structure

A. “An hour in this place just wasn’t worth it.”

B. “Things were different this evening”

C. “He must stay here the full hour to win the bet”

D. “He heard a low scrape from behind him.”

2.) Which of the following definition matches the meaning of the word “threshold” as it is used in this passage?

A. A level at which one starts to feel or react to something.

B. A strip of wood or stone forming a bottom of a doorway

C. A point of launch of the beginning, as into a new stage of phase

D. A level, rate, or amount at which something takes effect.

3.) Which of the following is a logical conclusion one could make based on the passage?

A. The graveyard groundskeeper is a very frightening person

B. Steven becomes most frightened by the atmosphere of the graveyard at night

C. Steven and David often make bets with each other

D. Children who live nearby often dare each other to visit the graveyard at night


Asked By VelvetRain82 at

Answered By Expert

Theo

Expert · 3.2k answers · 3k people helped

Answers:

1.B "Things were different this evening"

This indicates a compare and contrast text structure.  The graveyard is a usual route for Steven when he went to school. He has never been scared while taking the route. However, tonight things were different and he felt scared. This is the comparison and contrast 

2. B. A strip of wood or stone forming a bottom of a doorway

This is the meaning of the word threshold as used in the passage.

3. B. Steven becomes most frightened by the atmosphere of the graveyard at night

Steven is not frightened by groundskeeper  but is rather relieved at his sight. The passage doesn't comment on statements C and D. However it is clear that Steven is scared by the atmosphere  of the graveyard at night.

🧑‍🏫 More Questions

1. [9 pts] Consider the Hermiticity of the following operators: (a) Is the operator <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2251em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">x</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> a Hermitian operator? Prove your answer (b) Is the operator <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3629em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0179em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> a Hermitian operator? Prove your answer. (c) Is the Hamiltonian operator <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9233em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9233em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span></span><span class="svg-align" style="width:calc(100% - 0.1111em);margin-left:0.1111em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.24em;"><svg xmlns="http://www.w3.org/2000/svg" width='100%' height='0.24em' viewBox='0 0 1062 239' preserveAspectRatio='none'><path d='M529 0h5l519 115c5 1 9 5 9 10 0 1-1 2-1 3l-4 22 c-1 5-5 9-11 9h-2L532 67 19 159h-2c-5 0-9-4-11-9l-5-22c-1-6 2-12 8-13z'/></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3629em;vertical-align:-0.345em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0179em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">m</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight">ℏ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0179em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> a Hermitian operator if <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> is a real-valued function? Prove your answer . Hints: For (a) and (b), you may want to use integration by parts, and you may presume that any well-behaved function <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">Ψ</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> and its derivative <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.355em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">x</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mtight">Ψ</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">x</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> vanish at <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">±</span><span class="mord">∞</span></span></span></span>.