🎁BACK-TO-SCHOOL DEAL. Subscribe Now to get 40% OFF at only 8.49 USD/month, only valid until Sep 30th, 2024

Question

Question
Which of the following statements best describes sexual selection? Sexual selection occurs when there is a difference in mating success among individuals of the same sex with different phenotypes. Sexual selection acts only on traits related to finding a mate. Sexual selection refers to selection for ornamentation traits in males that help them acquire mates. Sexual selection applies only to males.

Asked By EnchantedEcho88 at

Answered By Expert

Tommy

Expert · 2.1k answers · 2k people helped

Step 1/2

Which of the following statements best describes sexual selection?

The phrase "Sexual selection occurs when there is a difference in mating success among individuals of the same sex with different phenotypes" sums up sexual selection the best. Competition for mates drives the process of sexual selection, which leads to the evolution of features that improve a person's chance of successfully mating. These characteristics might be physical or behavioral, and both sexes may display them. Consequently, sexual selection does not exclusively affect males or act on features associated with mate-finding or adornment in males.

The alternative choices are erroneous because they offer a constrained or misinformed understanding of sexual selection:

Sexual selection can affect a variety of traits that affect mating success, including physical traits like body size, coloration, and weaponry as well as behavioral traits like courtship displays and vocalizations. The claim that sexual selection only affects traits related to finding a mate is untrue.

"Sexual selection" is the practice of selecting males for ornamental qualities that aid in mate attraction. Sexual selection can affect a variety of other features in addition to ornamentation, therefore it is not the only sort of trait that can be selected for.

"Sexual selection only affects males" is untrue because it affects both males and females and in some species, it may affect one sex more strongly than the other.

Step 2/2

SUMMARY OF THE ANSWER:

Explanation:

The easiest way to define sexual selection is to say that it is a particular kind of natural selection that is motivated by competition for mates. The evolution of features that improve a person's chances of mating and having children is the result of sexual selection. These characteristics might be behavioral, like courtship rituals or mating sounds, or physical, such size or colouring. Both males and females are subject to sexual selection, which can lead to the development of secondary sexual traits like antlers or vivid plumage. Overall, sexual selection has a significant impact on the diversification of life on Earth and the evolution of reproductive strategies.

Final Answer

ANSWER:

Please review step 1 for your answer; I hope you find it satisfactory.

🧑‍🏫 More Questions

1. [9 pts] Consider the Hermiticity of the following operators: (a) Is the operator <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2251em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">x</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> a Hermitian operator? Prove your answer (b) Is the operator <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3629em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0179em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> a Hermitian operator? Prove your answer. (c) Is the Hamiltonian operator <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9233em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9233em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span></span><span class="svg-align" style="width:calc(100% - 0.1111em);margin-left:0.1111em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.24em;"><svg xmlns="http://www.w3.org/2000/svg" width='100%' height='0.24em' viewBox='0 0 1062 239' preserveAspectRatio='none'><path d='M529 0h5l519 115c5 1 9 5 9 10 0 1-1 2-1 3l-4 22 c-1 5-5 9-11 9h-2L532 67 19 159h-2c-5 0-9-4-11-9l-5-22c-1-6 2-12 8-13z'/></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3629em;vertical-align:-0.345em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0179em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">m</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight">ℏ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0179em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> a Hermitian operator if <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> is a real-valued function? Prove your answer . Hints: For (a) and (b), you may want to use integration by parts, and you may presume that any well-behaved function <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">Ψ</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> and its derivative <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.355em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">x</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mtight">Ψ</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">x</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> vanish at <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">±</span><span class="mord">∞</span></span></span></span>.