🎁BACK-TO-SCHOOL DEAL. Subscribe Now to get 40% OFF at only 8.49 USD/month, only valid until Sep 30th, 2024

Question

Question
17. The nucleic acid sequence in mRNA is determined by O the order of amino acids in the protein O nucleotide sequence in DNA O nucleotide sequence in tRNA O all of these choices are correct

Asked By OceanWhisper61 at

Answered By Expert

Beau

Expert · 1.0k answers · 1k people helped

Step 1/2

The correct answer is option (B) nucleotide sequence in DNA.

Explanation:

Nucleotide sequence in DNA: The nucleic acid sequence in mRNA is determined by the nucleotide sequence in DNA. This process is known as transcription. During transcription, the DNA sequence is used as a template to synthesize a complementary mRNA molecule. The mRNA molecule carries the genetic information encoded in the DNA sequence from the nucleus to the ribosomes in the cytoplasm, where it serves as a template for protein synthesis.

Step 2/2

Explanation for incorrect options

A) The order of amino acids in the protein: This statement is incorrect. The order of amino acids in a protein is determined by the sequence of codons in the mRNA molecule. Each codon, consisting of three nucleotides in the mRNA, codes for a specific amino acid.

Explanation:

C) Nucleotide sequence in RNA: This statement is incorrect. While RNA plays a crucial role in the process of protein synthesis, the nucleotide sequence in RNA is not responsible for determining the nucleic acid sequence in mRNA. Instead, mRNA is transcribed from DNA and carries the genetic information encoded in the DNA sequence. D) All of these choices are correct: This statement is incorrect. The correct answer is specifically B) nucleotide sequence in DNA.

Final Answer

To summarize, the nucleotide sequence in DNA

(option b) determines the nucleic acid sequence in mRNA through the process of transcription. The mRNA molecule then carries this information to guide the synthesis of proteins during translation.

🧑‍🏫 More Questions

<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2em;vertical-align:-0.35em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span><span class="mord mathnormal">A</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> That is, the null space of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> can be determined by computing eigenvectors corresponding to the zero eigenvalue for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span><span class="mord mathnormal">A</span></span></span></span>. (b) Let <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:3.6em;vertical-align:-1.55em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-2.25em;"><span class="pstrut" style="height:3.155em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-3.397em;"><span class="pstrut" style="height:3.155em;"></span><span style="height:0.016em;width:0.6667em;"><svg xmlns="http://www.w3.org/2000/svg" width='0.6667em' height='0.016em' style='width:0.6667em' viewBox='0 0 666.67 16' preserveAspectRatio='xMinYMin'><path d='M319 0 H403 V16 H319z M319 0 H403 V16 H319z'/></svg></span></span><span style="top:-4.05em;"><span class="pstrut" style="height:3.155em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">ϵ</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">ϵ</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-2.25em;"><span class="pstrut" style="height:3.155em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-3.397em;"><span class="pstrut" style="height:3.155em;"></span><span style="height:0.016em;width:0.6667em;"><svg xmlns="http://www.w3.org/2000/svg" width='0.6667em' height='0.016em' style='width:0.6667em' viewBox='0 0 666.67 16' preserveAspectRatio='xMinYMin'><path d='M263 0 H347 V16 H263z M263 0 H347 V16 H263z'/></svg></span></span><span style="top:-4.05em;"><span class="pstrut" style="height:3.155em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span></span> where <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">ϵ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>. Compute eigenvalues for the matrix <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span><span class="mord mathnormal">A</span></span></span></span> by hand. For which values of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ϵ</span></span></span></span> the null-space of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> is trivial? (c) Determine <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> using matlab, when <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ϵ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span> and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span></span></span>. Compute eigenvalues and corresponding eigenvectors for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span><span class="mord mathnormal">A</span></span></span></span> numerically. Does Matlab agree with you on the dimension of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> for each value of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ϵ</span></span></span></span> ? Include the script that you used and the computed eigenvalues and vectors to your solution. Hints: (a) The inclusion <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2em;vertical-align:-0.35em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span><span class="mord mathnormal">A</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span></span></span></span> can be easily proven. To prove that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2em;vertical-align:-0.35em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span><span class="mord mathnormal">A</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>, multiply <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span><span class="mord mathnormal">A</span></span></span></span> from both sides with <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span> and interpret the result as <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord">∥</span><span class="mord mathnormal">A</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mord"><span class="mord">∥</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.4519em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span></span></span></span>. (c) Try out he commands help eig and format long in Matlab.